
18
TRANSACTION MANAGEMENT

OVERVIEW

I always say, keep a diary and someday it’ll keep you.

—Mae West

In this chapter we cover the concept of a transaction, which is the foundation for

concurrent execution and recovery from system failure in a DBMS. A transaction is

defined as any one execution of a user program in a DBMS and differs from an execution

of a program outside the DBMS (e.g., a C program executing on Unix) in important

ways. (Executing the same program several times will generate several transactions.)

For performance reasons, a DBMS has to interleave the actions of several transactions.

However, to give users a simple way to understand the effect of running their programs,

the interleaving is done carefully to ensure that the result of a concurrent execution of

transactions is nonetheless equivalent (in its effect upon the database) to some serial,

or one-at-a-time, execution of the same set of transactions. How the DBMS handles

concurrent executions is an important aspect of transaction management and is the

subject of concurrency control. A closely related issue is how the DBMS handles partial

transactions, or transactions that are interrupted before they run to normal completion.

The DBMS ensures that the changes made by such partial transactions are not seen

by other transactions. How this is achieved is the subject of crash recovery. In this

chapter, we provide a broad introduction to concurrency control and crash recovery in

a DBMS. The details are developed further in the next two chapters.

Section 18.1 reviews the transaction concept, which we discussed briefly in Chapter

1. Section 18.2 presents an abstract way of describing an interleaved execution of

several transactions, called a schedule. Section 18.3 discusses various problems that

can arise due to interleaved execution. We conclude with an overview of crash recovery

in Section 18.5.

18.1 THE CONCEPT OF A TRANSACTION

A user writes data access/update programs in terms of the high-level query and up-

date language supported by the DBMS. To understand how the DBMS handles such

requests, with respect to concurrency control and recovery, it is convenient to regard

523

524 Chapter 18

an execution of a user program, or transaction, as a series of reads and writes of

database objects:

To read a database object, it is first brought into main memory (specifically, some

frame in the buffer pool) from disk, and then its value is copied into a program

variable.

To write a database object, an in-memory copy of the object is first modified and

then written to disk.

Database ‘objects’ are the units in which programs read or write information. The

units could be pages, records, and so on, but this is dependent on the DBMS and

is not central to the principles underlying concurrency control or recovery. In this

chapter, we will consider a database to be a fixed collection of independent objects.

When objects are added to or deleted from a database, or there are relationships

between database objects that we want to exploit for performance, some additional

issues arise; we discuss these issues in Section 19.3.

There are four important properties of transactions that a DBMS must ensure to

maintain data in the face of concurrent access and system failures:

1. Users should be able to regard the execution of each transaction as atomic: either

all actions are carried out or none are. Users should not have to worry about the

effect of incomplete transactions (say, when a system crash occurs).

2. Each transaction, run by itself with no concurrent execution of other transactions,

must preserve the consistency of the database. This property is called consis-

tency, and the DBMS assumes that it holds for each transaction. Ensuring this

property of a transaction is the responsibility of the user.

3. Users should be able to understand a transaction without considering the effect of

other concurrently executing transactions, even if the DBMS interleaves the ac-

tions of several transactions for performance reasons. This property is sometimes

referred to as isolation: Transactions are isolated, or protected, from the effects

of concurrently scheduling other transactions.

4. Once the DBMS informs the user that a transaction has been successfully com-

pleted, its effects should persist even if the system crashes before all its changes

are reflected on disk. This property is called durability.

The acronym ACID is sometimes used to refer to the four properties of transactions

that we have presented here: atomicity, consistency, isolation and durability. We now

consider how each of these properties is ensured in a DBMS.

Transaction Management Overview 525

18.1.1 Consistency and Isolation

Users are responsible for ensuring transaction consistency. That is, the user who

submits a transaction must ensure that when run to completion by itself against a

‘consistent’ database instance, the transaction will leave the database in a ‘consistent’

state. For example, the user may (naturally!) have the consistency criterion that

fund transfers between bank accounts should not change the total amount of money

in the accounts. To transfer money from one account to another, a transaction must

debit one account, temporarily leaving the database inconsistent in a global sense, even

though the new account balance may satisfy any integrity constraints with respect to

the range of acceptable account balances. The user’s notion of a consistent database

is preserved when the second account is credited with the transferred amount. If a

faulty transfer program always credits the second account with one dollar less than

the amount debited from the first account, the DBMS cannot be expected to detect

inconsistencies due to such errors in the user program’s logic.

The isolation property is ensured by guaranteeing that even though actions of several

transactions might be interleaved, the net effect is identical to executing all transactions

one after the other in some serial order. (We discuss how the DBMS implements

this guarantee in Section 18.4.) For example, if two transactions T1 and T2 are

executed concurrently, the net effect is guaranteed to be equivalent to executing (all

of) T1 followed by executing T2 or executing T2 followed by executing T1. (The

DBMS provides no guarantees about which of these orders is effectively chosen.) If

each transaction maps a consistent database instance to another consistent database

instance, executing several transactions one after the other (on a consistent initial

database instance) will also result in a consistent final database instance.

Database consistency is the property that every transaction sees a consistent database

instance. Database consistency follows from transaction atomicity, isolation, and trans-

action consistency. Next, we discuss how atomicity and durability are guaranteed in a

DBMS.

18.1.2 Atomicity and Durability

Transactions can be incomplete for three kinds of reasons. First, a transaction can be

aborted, or terminated unsuccessfully, by the DBMS because some anomaly arises

during execution. If a transaction is aborted by the DBMS for some internal reason,

it is automatically restarted and executed anew. Second, the system may crash (e.g.,

because the power supply is interrupted) while one or more transactions are in progress.

Third, a transaction may encounter an unexpected situation (for example, read an

unexpected data value or be unable to access some disk) and decide to abort (i.e.,

terminate itself).

526 Chapter 18

Of course, since users think of transactions as being atomic, a transaction that is

interrupted in the middle may leave the database in an inconsistent state. Thus a

DBMS must find a way to remove the effects of partial transactions from the database,

that is, it must ensure transaction atomicity: either all of a transaction’s actions are

carried out, or none are. A DBMS ensures transaction atomicity by undoing the actions

of incomplete transactions. This means that users can ignore incomplete transactions

in thinking about how the database is modified by transactions over time. To be able

to do this, the DBMS maintains a record, called the log, of all writes to the database.

The log is also used to ensure durability: If the system crashes before the changes

made by a completed transaction are written to disk, the log is used to remember and

restore these changes when the system restarts.

The DBMS component that ensures atomicity and durability is called the recovery

manager and is discussed further in Section 18.5.

18.2 TRANSACTIONS AND SCHEDULES

A transaction is seen by the DBMS as a series, or list, of actions. The actions that

can be executed by a transaction include reads and writes of database objects. A

transaction can also be defined as a set of actions that are partially ordered. That is,

the relative order of some of the actions may not be important. In order to concentrate

on the main issues, we will treat transactions (and later, schedules) as a list of actions.

Further, to keep our notation simple, we’ll assume that an object O is always read

into a program variable that is also named O. We can therefore denote the action of

a transaction T reading an object O as RT (O); similarly, we can denote writing as

WT (O). When the transaction T is clear from the context, we will omit the subscript.

In addition to reading and writing, each transaction must specify as its final action

either commit (i.e., complete successfully) or abort (i.e., terminate and undo all the

actions carried out thus far). AbortT denotes the action of T aborting, and CommitT

denotes T committing.

A schedule is a list of actions (reading, writing, aborting, or committing) from a

set of transactions, and the order in which two actions of a transaction T appear in

a schedule must be the same as the order in which they appear in T . Intuitively,

a schedule represents an actual or potential execution sequence. For example, the

schedule in Figure 18.1 shows an execution order for actions of two transactions T1

and T2. We move forward in time as we go down from one row to the next. We

emphasize that a schedule describes the actions of transactions as seen by the DBMS.

In addition to these actions, a transaction may carry out other actions, such as reading

or writing from operating system files, evaluating arithmetic expressions, and so on.

Transaction Management Overview 527

T1 T2

R(A)

W (A)

R(B)

W (B)

R(C)

W (C)

Figure 18.1 A Schedule Involving Two Transactions

Notice that the schedule in Figure 18.1 does not contain an abort or commit action

for either transaction. A schedule that contains either an abort or a commit for each

transaction whose actions are listed in it is called a complete schedule. A complete

schedule must contain all the actions of every transaction that appears in it. If the

actions of different transactions are not interleaved—that is, transactions are executed

from start to finish, one by one—we call the schedule a serial schedule.

18.3 CONCURRENT EXECUTION OF TRANSACTIONS

Now that we’ve introduced the concept of a schedule, we have a convenient way to

describe interleaved executions of transactions. The DBMS interleaves the actions of

different transactions to improve performance, in terms of increased throughput or

improved response times for short transactions, but not all interleavings should be

allowed. In this section we consider what interleavings, or schedules, a DBMS should

allow.

18.3.1 Motivation for Concurrent Execution

The schedule shown in Figure 18.1 represents an interleaved execution of the two trans-

actions. Ensuring transaction isolation while permitting such concurrent execution is

difficult, but is necessary for performance reasons. First, while one transaction is wait-

ing for a page to be read in from disk, the CPU can process another transaction. This

is because I/O activity can be done in parallel with CPU activity in a computer. Over-

lapping I/O and CPU activity reduces the amount of time disks and processors are idle,

and increases system throughput (the average number of transactions completed in

a given time). Second, interleaved execution of a short transaction with a long trans-

action usually allows the short transaction to complete quickly. In serial execution, a

short transaction could get stuck behind a long transaction leading to unpredictable

delays in response time, or average time taken to complete a transaction.

528 Chapter 18

18.3.2 Serializability

To begin with, we assume that the database designer has defined some notion of a

consistent database state. For example, we can define a consistency criterion for a

university database to be that the sum of employee salaries in each department should

be less than 80 percent of the budget for that department. We require that each

transaction must preserve database consistency; it follows that any serial schedule

that is complete will also preserve database consistency. That is, when a complete

serial schedule is executed against a consistent database, the result is also a consistent

database.

A serializable schedule over a set S of committed transactions is a schedule whose

effect on any consistent database instance is guaranteed to be identical to that of

some complete serial schedule over S. That is, the database instance that results from

executing the given schedule is identical to the database instance that results from

executing the transactions in some serial order. There are some important points to

note in this definition:

Executing the transactions serially in different orders may produce different re-

sults, but all are presumed to be acceptable; the DBMS makes no guarantees

about which of them will be the outcome of an interleaved execution.

The above definition of a serializable schedule does not cover the case of schedules

containing aborted transactions. For simplicity, we begin by discussing interleaved

execution of a set of complete, committed transactions and consider the impact

of aborted transactions in Section 18.3.4.

If a transaction computes a value and prints it to the screen, this is an ‘effect’

that is not directly captured in the state of the database. We will assume that all

such values are also written into the database, for simplicity.

18.3.3 Some Anomalies Associated with Interleaved Execution

We now illustrate three main ways in which a schedule involving two consistency

preserving, committed transactions could run against a consistent database and leave

it in an inconsistent state. Two actions on the same data object conflict if at least

one of them is a write. The three anomalous situations can be described in terms of

when the actions of two transactions T1 and T2 conflict with each other: in a write-

read (WR) conflict T2 reads a data object previously written by T1; we define

read-write (RW) and write-write (WW) conflicts similarly.

Transaction Management Overview 529

Reading Uncommitted Data (WR Conflicts)

The first source of anomalies is that a transaction T2 could read a database object

A that has been modified by another transaction T1, which has not yet committed.

Such a read is called a dirty read. A simple example illustrates how such a schedule

could lead to an inconsistent database state. Consider two transactions T1 and T2,

each of which, run alone, preserves database consistency: T1 transfers $100 from A to

B, and T2 increments both A and B by 6 percent (e.g., annual interest is deposited

into these two accounts). Suppose that their actions are interleaved so that (1) the

account transfer program T1 deducts $100 from account A, then (2) the interest deposit

program T2 reads the current values of accounts A and B and adds 6 percent interest

to each, and then (3) the account transfer program credits $100 to account B. The

corresponding schedule, which is the view the DBMS has of this series of events, is

illustrated in Figure 18.2. The result of this schedule is different from any result that

T1 T2

R(A)

W (A)

R(A)

W (A)

R(B)

W (B)

Commit

R(B)

W (B)

Commit

Figure 18.2 Reading Uncommitted Data

we would get by running one of the two transactions first and then the other. The

problem can be traced to the fact that the value of A written by T1 is read by T2

before T1 has completed all its changes.

The general problem illustrated here is that T1 may write some value into A that

makes the database inconsistent. As long as T1 overwrites this value with a ‘correct’

value of A before committing, no harm is done if T1 and T2 run in some serial order,

because T2 would then not see the (temporary) inconsistency. On the other hand,

interleaved execution can expose this inconsistency and lead to an inconsistent final

database state.

Note that although a transaction must leave a database in a consistent state after it

completes, it is not required to keep the database consistent while it is still in progress.

Such a requirement would be too restrictive: To transfer money from one account

530 Chapter 18

to another, a transaction must debit one account, temporarily leaving the database

inconsistent, and then credit the second account, restoring consistency again.

Unrepeatable Reads (RW Conflicts)

The second way in which anomalous behavior could result is that a transaction T2

could change the value of an object A that has been read by a transaction T1, while

T1 is still in progress. This situation causes two problems.

First, if T1 tries to read the value of A again, it will get a different result, even though

it has not modified A in the meantime. This situation could not arise in a serial

execution of two transactions; it is called an unrepeatable read.

Second, suppose that both T1 and T2 read the same value of A, say, 5, and then T1,

which wants to increment A by 1, changes it to 6, and T2, which wants to decrement

A by 1, decrements the value that it read (i.e., 5) and changes A to 4. Running

these transactions in any serial order should leave A with a final value of 5; thus, the

interleaved execution leads to an inconsistent state. The underlying problem here is

that although T2’s change is not directly read by T1, it invalidates T1’s assumption

about the value of A, which is the basis for some of T1’s subsequent actions.

Overwriting Uncommitted Data (WW Conflicts)

The third source of anomalous behavior is that a transaction T2 could overwrite the

value of an object A, which has already been modified by a transaction T1, while T1

is still in progress. Even if T2 does not read the value of A written by T1, a potential

problem exists as the following example illustrates.

Suppose that Harry and Larry are two employees, and their salaries must be kept equal.

Transaction T1 sets their salaries to $1,000 and transaction T2 sets their salaries to

$2,000. If we execute these in the serial order T1 followed by T2, both receive the

salary $2,000; the serial order T2 followed by T1 gives each the salary $1,000. Either

of these is acceptable from a consistency standpoint (although Harry and Larry may

prefer a higher salary!). Notice that neither transaction reads a salary value before

writing it—such a write is called a blind write, for obvious reasons.

Now, consider the following interleaving of the actions of T1 and T2: T1 sets Harry’s

salary to $1,000, T2 sets Larry’s salary to $2,000, T1 sets Larry’s salary to $1,000,

and finally T2 sets Harry’s salary to $2,000. The result is not identical to the result

of either of the two possible serial executions, and the interleaved schedule is therefore

not serializable. It violates the desired consistency criterion that the two salaries must

be equal.

Transaction Management Overview 531

18.3.4 Schedules Involving Aborted Transactions

We now extend our definition of serializability to include aborted transactions.1 In-

tuitively, all actions of aborted transactions are to be undone, and we can therefore

imagine that they were never carried out to begin with. Using this intuition, we ex-

tend the definition of a serializable schedule as follows: A serializable schedule over

a set S of transactions is a schedule whose effect on any consistent database instance

is guaranteed to be identical to that of some complete serial schedule over the set of

committed transactions in S.

This definition of serializability relies on the actions of aborted transactions being

undone completely, which may be impossible in some situations. For example, suppose

that (1) an account transfer program T1 deducts $100 from account A, then (2) an

interest deposit program T2 reads the current values of accounts A and B and adds 6

percent interest to each, then commits, and then (3) T1 is aborted. The corresponding

schedule is shown in Figure 18.3. Now, T2 has read a value for A that should never have

T1 T2

R(A)

W (A)

R(A)

W (A)

R(B)

W (B)

Commit

Abort

Figure 18.3 An Unrecoverable Schedule

been there! (Recall that aborted transactions’ effects are not supposed to be visible to

other transactions.) If T2 had not yet committed, we could deal with the situation by

cascading the abort of T1 and also aborting T2; this process would recursively abort any

transaction that read data written by T2, and so on. But T2 has already committed,

and so we cannot undo its actions! We say that such a schedule is unrecoverable. A

recoverable schedule is one in which transactions commit only after (and if!) all

transactions whose changes they read commit. If transactions read only the changes

of committed transactions, not only is the schedule recoverable, but also aborting a

transaction can be accomplished without cascading the abort to other transactions.

Such a schedule is said to avoid cascading aborts.

1We must also consider incomplete transactions for a rigorous discussion of system failures, because

transactions that are active when the system fails are neither aborted nor committed. However, system

recovery usually begins by aborting all active transactions, and for our informal discussion, considering

schedules involving committed and aborted transactions is sufficient.

532 Chapter 18

There is another potential problem in undoing the actions of a transaction. Suppose

that a transaction T2 overwrites the value of an object A that has been modified by a

transaction T1, while T1 is still in progress, and T1 subsequently aborts. All of T1’s

changes to database objects are undone by restoring the value of any object that it

modified to the value of the object before T1’s changes. (We will look at the details

of how a transaction abort is handled in Chapter 20.) When T1 is aborted, and its

changes are undone in this manner, T2’s changes are lost as well, even if T2 decides

to commit. So, for example, if A originally had the value 5, then was changed by

T1 to 6, and by T2 to 7, if T1 now aborts, the value of A becomes 5 again. Even if

T2 commits, its change to A is inadvertently lost. A concurrency control technique

called Strict 2PL, introduced in Section 18.4, can prevent this problem (as discussed

in Section 19.1.1).

18.4 LOCK-BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable schedules are al-

lowed, and that no actions of committed transactions are lost while undoing aborted

transactions. A DBMS typically uses a locking protocol to achieve this. A locking

protocol is a set of rules to be followed by each transaction (and enforced by the

DBMS), in order to ensure that even though actions of several transactions might be

interleaved, the net effect is identical to executing all transactions in some serial order.

18.4.1 Strict Two-Phase Locking (Strict 2PL)

The most widely used locking protocol, called Strict Two-Phase Locking, or Strict 2PL,

has two rules. The first rule is

(1) If a transaction T wants to read (respectively, modify) an object, it first

requests a shared (respectively, exclusive) lock on the object.

Of course, a transaction that has an exclusive lock can also read the object; an ad-

ditional shared lock is not required. A transaction that requests a lock is suspended

until the DBMS is able to grant it the requested lock. The DBMS keeps track of the

locks it has granted and ensures that if a transaction holds an exclusive lock on an

object, no other transaction holds a shared or exclusive lock on the same object. The

second rule in Strict 2PL is:

(2) All locks held by a transaction are released when the transaction is com-

pleted.

Requests to acquire and release locks can be automatically inserted into transactions

by the DBMS; users need not worry about these details.

Transaction Management Overview 533

In effect the locking protocol allows only ‘safe’ interleavings of transactions. If two

transactions access completely independent parts of the database, they will be able to

concurrently obtain the locks that they need and proceed merrily on their ways. On

the other hand, if two transactions access the same object, and one of them wants

to modify it, their actions are effectively ordered serially—all actions of one of these

transactions (the one that gets the lock on the common object first) are completed

before (this lock is released and) the other transaction can proceed.

We denote the action of a transaction T requesting a shared (respectively, exclusive)

lock on object O as ST (O) (respectively, XT (O)), and omit the subscript denoting the

transaction when it is clear from the context. As an example, consider the schedule

shown in Figure 18.2. This interleaving could result in a state that cannot result from

any serial execution of the three transactions. For instance, T1 could change A from 10

to 20, then T2 (which reads the value 20 for A) could change B from 100 to 200, and

then T1 would read the value 200 for B. If run serially, either T1 or T2 would execute

first, and read the values 10 for A and 100 for B: Clearly, the interleaved execution is

not equivalent to either serial execution.

If the Strict 2PL protocol is used, the above interleaving is disallowed. Let us see

why. Assuming that the transactions proceed at the same relative speed as before, T1

would obtain an exclusive lock on A first and then read and write A (Figure 18.4).

Then, T2 would request a lock on A. However, this request cannot be granted until

T1 T2

X(A)

R(A)

W (A)

Figure 18.4 Schedule Illustrating Strict 2PL

T1 releases its exclusive lock on A, and the DBMS therefore suspends T2. T1 now

proceeds to obtain an exclusive lock on B, reads and writes B, then finally commits, at

which time its locks are released. T2’s lock request is now granted, and it proceeds. In

this example the locking protocol results in a serial execution of the two transactions,

shown in Figure 18.5. In general, however, the actions of different transactions could

be interleaved. As an example, consider the interleaving of two transactions shown in

Figure 18.6, which is permitted by the Strict 2PL protocol.

18.5 INTRODUCTION TO CRASH RECOVERY

The recovery manager of a DBMS is responsible for ensuring transaction atomicity

and durability. It ensures atomicity by undoing the actions of transactions that do

534 Chapter 18

T1 T2

X(A)

R(A)

W (A)

X(B)

R(B)

W (B)

Commit

X(A)

R(A)

W (A)

X(B)

R(B)

W (B)

Commit

Figure 18.5 Schedule Illustrating Strict 2PL with Serial Execution

T1 T2

S(A)

R(A)

S(A)

R(A)

X(B)

R(B)

W (B)

Commit

X(C)

R(C)

W (C)

Commit

Figure 18.6 Schedule Following Strict 2PL with Interleaved Actions

Transaction Management Overview 535

not commit and durability by making sure that all actions of committed transactions

survive system crashes, (e.g., a core dump caused by a bus error) and media failures

(e.g., a disk is corrupted).

When a DBMS is restarted after crashes, the recovery manager is given control and

must bring the database to a consistent state. The recovery manager is also responsible

for undoing the actions of an aborted transaction. To see what it takes to implement a

recovery manager, it is necessary to understand what happens during normal execution.

The transaction manager of a DBMS controls the execution of transactions. Before

reading and writing objects during normal execution, locks must be acquired (and

released at some later time) according to a chosen locking protocol.2 For simplicity of

exposition, we make the following assumption:

Atomic Writes: Writing a page to disk is an atomic action.

This implies that the system does not crash while a write is in progress and is unrealis-

tic. In practice, disk writes do not have this property, and steps must be taken during

restart after a crash (Section 20.2) to verify that the most recent write to a given page

was completed successfully and to deal with the consequences if not.

18.5.1 Stealing Frames and Forcing Pages

With respect to writing objects, two additional questions arise:

1. Can the changes made to an object O in the buffer pool by a transaction T

be written to disk before T commits? Such writes are executed when another

transaction wants to bring in a page and the buffer manager chooses to replace

the page containing O; of course, this page must have been unpinned by T . If

such writes are allowed, we say that a steal approach is used. (Informally, the

second transaction ‘steals’ a frame from T .)

2. When a transaction commits, must we ensure that all the changes it has made

to objects in the buffer pool are immediately forced to disk? If so, we say that a

force approach is used.

From the standpoint of implementing a recovery manager, it is simplest to use a buffer

manager with a no-steal, force approach. If no-steal is used, we don’t have to undo

the changes of an aborted transaction (because these changes have not been written to

disk), and if force is used, we don’t have to redo the changes of a committed transaction

2A concurrency control technique that does not involve locking could be used instead, but we will

assume that locking is used.

536 Chapter 18

if there is a subsequent crash (because all these changes are guaranteed to have been

written to disk at commit time).

However, these policies have important drawbacks. The no-steal approach assumes

that all pages modified by ongoing transactions can be accommodated in the buffer

pool, and in the presence of large transactions (typically run in batch mode, e.g., payroll

processing), this assumption is unrealistic. The force approach results in excessive page

I/O costs. If a highly used page is updated in succession by 20 transactions, it would

be written to disk 20 times. With a no-force approach, on the other hand, the in-

memory copy of the page would be successively modified and written to disk just once,

reflecting the effects of all 20 updates, when the page is eventually replaced in the

buffer pool (in accordance with the buffer manager’s page replacement policy).

For these reasons, most systems use a steal, no-force approach. Thus, if a frame is

dirty and chosen for replacement, the page it contains is written to disk even if the

modifying transaction is still active (steal); in addition, pages in the buffer pool that

are modified by a transaction are not forced to disk when the transaction commits

(no-force).

18.5.2 Recovery-Related Steps during Normal Execution

The recovery manager of a DBMS maintains some information during normal execution

of transactions in order to enable it to perform its task in the event of a failure. In

particular, a log of all modifications to the database is saved on stable storage,

which is guaranteed (with very high probability) to survive crashes and media failures.

Stable storage is implemented by maintaining multiple copies of information (perhaps

in different locations) on nonvolatile storage devices such as disks or tapes. It is

important to ensure that the log entries describing a change to the database are written

to stable storage before the change is made; otherwise, the system might crash just

after the change, leaving us without a record of the change.

The log enables the recovery manager to undo the actions of aborted and incomplete

transactions and to redo the actions of committed transactions. For example, a trans-

action that committed before the crash may have made updates to a copy (of a database

object) in the buffer pool, and this change may not have been written to disk before

the crash, because of a no-force approach. Such changes must be identified using the

log, and must be written to disk. Further, changes of transactions that did not commit

prior to the crash might have been written to disk because of a steal approach. Such

changes must be identified using the log and then undone.

Transaction Management Overview 537

18.5.3 Overview of ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force approach.

When the recovery manager is invoked after a crash, restart proceeds in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have not

been written to disk) and active transactions at the time of the crash.

2. Redo: Repeats all actions, starting from an appropriate point in the log, and

restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that the

database reflects only the actions of committed transactions.

The ARIES algorithm is discussed further in Chapter 20.

18.6 POINTS TO REVIEW

A transaction is any one execution of a user program. A DBMS has to ensure four

important properties of transactions: atomicity (all actions in a transaction are

carried out or none), consistency (as long as each transaction leaves the DBMS in

a consistent state, no transaction will see an inconsistent DBMS state), isolation

(two concurrently executing transactions do not have to consider interference),

and durability (if a transaction completes successfully, its effects persist even if

the system crashes). (Section 18.1)

A transaction is a series of reads and writes of database objects. As its final action,

each transaction either commits (completes successfully) or aborts (terminates

unsuccessfully). If a transaction commits, its actions have to be durable. If a

transaction aborts, all its actions have to be undone. A schedule is a potential

execution sequence for the actions in a set of transactions. (Section 18.2)

Concurrent execution of transactions improves overall system performance by in-

creasing system throughput (the average number of transactions completed in a

given time) and response time (the average time taken to complete a transaction).

Two actions on the same data object conflict if at least one of the actions is a

write. Three types of conflicting actions lead to three different anomalies. In a

write-read (WR) conflict, one transaction could read uncommitted data from an-

other transaction. Such a read is called a dirty read. In a read-write (RW) conflict,

a transaction could read a data object twice with different results. Such a situa-

tion is called an unrepeatable read. In a write-write (WW) conflict, a transaction

overwrites a data object written by another transaction. If the first transaction

subsequently aborts, the change made by the second transaction could be lost

unless a complex recovery mechanism is used. A serializable schedule is a schedule

538 Chapter 18

whose effect is identical to a serial schedule. A recoverable schedule is a schedule

in which transactions commit only after all transactions whose changes they read

have committed. A schedule avoids cascading aborts if it only reads data written

by already committed transactions. A strict schedule only reads or writes data

written by already committed transactions. (Section 18.3)

A locking protocol ensures that only schedules with desirable properties are gen-

erated. In Strict Two-Phase Locking (Strict 2PL), a transaction first acquires a

lock before it accesses a data object. Locks can be shared (read-locks) or exclusive

(write-locks). In Strict 2PL, all locks held by a transaction must be held until the

transaction completes. (Section 18.4)

The recovery manager of a DBMS ensures atomicity if transactions abort and

durability if the system crashes or storage media fail. It maintains a log of all

modifications to the database. The transaction manager controls the execution

of all transactions. If changes made by a transaction can be propagated to disk

before the transaction has committed, we say that a steal approach is used. If all

changes made by a transaction are immediately forced to disk after the transaction

commits, we say that a force approach is used. ARIES is a recovery algorithm

with a steal, no-force approach. (Section 18.5)

EXERCISES

Exercise 18.1 Give brief answers to the following questions:

1. What is a transaction? In what ways is it different from an ordinary program (in a

language such as C)?

2. Define these terms: atomicity, consistency, isolation, durability, schedule, blind write,

dirty read, unrepeatable read, serializable schedule, recoverable schedule, avoids-cascading-

aborts schedule.

3. Describe Strict 2PL.

Exercise 18.2 Consider the following actions taken by transaction T1 on database objects

X and Y :

R(X), W(X), R(Y), W(Y)

1. Give an example of another transaction T2 that, if run concurrently to transaction T

without some form of concurrency control, could interfere with T1.

2. Explain how the use of Strict 2PL would prevent interference between the two transac-

tions.

3. Strict 2PL is used in many database systems. Give two reasons for its popularity.

Exercise 18.3 Consider a database with objects X and Y and assume that there are two

transactions T1 and T2. Transaction T1 reads objects X and Y and then writes object X.

Transaction T2 reads objects X and Y and then writes objects X and Y .

Transaction Management Overview 539

1. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a write-read conflict.

2. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a read-write conflict.

3. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a write-write conflict.

4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Exercise 18.4 Consider the following (incomplete) schedule S:

T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

1. Can you determine the serializability graph for this schedule? Assuming that all three

transactions eventually commit, show the serializability graph.

2. For each of the following, modify S to create a complete schedule that satisfies the

stated condition. If a modification is not possible, explain briefly. If it is possible, use

the smallest possible number of actions (read, write, commit, or abort). You are free to

add new actions anywhere in the schedule S, including in the middle.

(a) Resulting schedule avoids cascading aborts but is not recoverable.

(b) Resulting schedule is recoverable.

(c) Resulting schedule is conflict-serializable.

Exercise 18.5 Suppose that a DBMS recognizes increment, which increments an integer-

valued object by 1, and decrement as actions, in addition to reads and writes. A transaction

that increments an object need not know the value of the object; increment and decrement

are versions of blind writes. In addition to shared and exclusive locks, two special locks are

supported: An object must be locked in I mode before incrementing it and locked in D mode

before decrementing it. An I lock is compatible with another I or D lock on the same object,

but not with S and X locks.

1. Illustrate how the use of I and D locks can increase concurrency. (Show a schedule

allowed by Strict 2PL that only uses S and X locks. Explain how the use of I and D

locks can allow more actions to be interleaved, while continuing to follow Strict 2PL.)

2. Informally explain how Strict 2PL guarantees serializability even in the presence of I

and D locks. (Identify which pairs of actions conflict, in the sense that their relative

order can affect the result, and show that the use of S, X, I, and D locks according

to Strict 2PL orders all conflicting pairs of actions to be the same as the order in some

serial schedule.)

BIBLIOGRAPHIC NOTES

The transaction concept and some of its limitations are discussed in [282]. A formal transac-

tion model that generalizes several earlier transaction models is proposed in [151].

Two-phase locking is introduced in [214], a fundamental paper that also discusses the concepts

of transactions, phantoms, and predicate locks. Formal treatments of serializability appear

in [79, 506].

